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Abstract: While machines and robots must interact with humans, providing them1

with social skills has been a largely overlooked topic. This is mostly a consequence2

of the fact that tasks such as navigation, command following, and even game3

playing are well-defined, while social reasoning still mostly remains a pre-theoretic4

problem. We demonstrate how social interactions can be effectively incorporated5

into MDPs (Markov decision processes) by reasoning recursively about the goals6

of other agents. In essence, our method extends the reward function to include7

a combination of physical goals (something agents want to accomplish in the8

configuration space, a traditional MDP) and social goals (something agents want9

to accomplish relative to the goals of other agents). Our Social MDPs allow10

specifying reward functions in terms of the estimated reward functions of other11

agents, modeling interactions such as helping or hindering another agent (by12

maximizing or minimizing the other agent’s reward) while balancing this with the13

actual physical goals of each agent. Our formulation allows for an arbitrary function14

of another agent’s estimated reward structure and physical goals, enabling more15

complex behaviors such as politely hindering another agent or aggressively helping16

them. Extending Social MDPs in the same manner as I-POMDPs (Interactive-17

partially observed Markov decision processes) extension would enable interactions18

such as convincing another agent that something is true. To what extent the Social19

MDPs presented here and their potential Social POMDPs variant account for all20

possible social interactions is unknown, but having a precise mathematical model to21

guide questions about social interactions has both practical value (we demonstrate22

how to make zero-shot social inferences and one could imagine chatbots and robots23

guided by Social MDPs) and theoretical value by bringing the tools of MDP that24

have so successfully organized research around navigation to shed light on what25

social interactions really are given their extreme importance to human well-being26

and human civilization.27

1 Introduction28

Progress on modeling social interactions and giving machines social goals, such as being particularly29

nice to a user, is significantly hampered by the lack of theoretical models which characterize what30

social interactions are. While microsociology has uncovered common structures in social interactions31

[1] a computational model is still elusive. Until not too long ago, this was also the state of robot32

navigation and sensing which was revolutionized by extending MDPs [2] to POMDPs [3]. Defining33

the problem clearly allowed us as a field to understand what we can model and how to do so. Until we34

take this same step for social interactions, they will remain on shaky ground despite their importance35

to virtually every interaction humans engage in.36

We introduce an extension of MDPs, which we term Social MDPs. In the process, we make several37

assumptions. First, that agents have both physical goals (e.g., bring the red key home) and social goals38

(e.g., prevent John from getting his yellow key), and that their overall reward structure is an arbitrary39

combination of the two, potentially accompanied by other terms. Physical goals are precisely what40

MDPs can already express, a function of points in a configuration space. Social goals are a function41

of the estimate of the reward structure of another agent. For example, a reward that hinders another42

agent is a negative function of the estimated reward of that agent. Complicating matters is the fact43

that social rewards like beliefs can be recursive: an agent may want to help another agent help them.44

To model this, Social MDPs are recursive up to a bounded depth, much like interactive POMDPs [4],45

I-POMDPs. Unlike I-POMDPs, Social MDPs are not recursive in terms of agent’s beliefs about the46
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Figure 1: An example of recursively solving Social MDP for the
yellow robot at level 2 in a two-agent interaction scenario. We
denote the yellow robot as agent 1 and the red robot as agent 2.
At level 2, the yellow robot estimates the red robot’s goals (both
physical g̃1,22 and social χ̃2,1

12 ) and social policy by assuming the
red robot is running a level 1 Social MDP. Solving the social policy
ψ̃1,1

2 of the red robot at level 1 requires the red robot to estimate
the yellow robot’s goals and policy by assuming the yellow robot
is running a level 0 Social MDP, i.e., a regular MDP, so we can
drop the estimation of χ̃2,1

12 here. All these estimates are in agent
1’s belief space and are updated at every time step.

Require: l, st, atJ , χij , gi
if l = 0 then

solve MDP for agent i
else

for all χ̃i,l,tji , g̃i,l,tj do
compute
P (χ̃i,l,t

ji |s
t−1, at−1

J )

P (g̃i,l,tj |s1:t−1)

ψ̃i,l−1
j (st, atJ , χ̃

i,l,t
ji , g̃i,l,tj )

end for
compute Rl

i(s
t, atJ , χiJ , gi)

compute Ql
i(s

t, atJ , χiJ , gi)
πl
i ← argmaxai∈Ai Q

l
i

end if

Figure 2: The algorithm to compute social
policy ψl

i for agent i at level l and time t.
We use the estimated social policy ψ̃i,l−1

j at
previous time step to update the estimated
physical and social goal as described in Sec-
tion 3.3.1. At t = 0, we assume P (g̃i,l,tj )

and P (χ̃i,l,t
jJ ) are from uniform distributions.

This algorithm is called at all recursion steps
ψ̃i,l−1

j to estimate social policy for the other
agent j ∈ J . The estimated goals and poli-
cies are used to compute the rewards and Q
values for selecting the actions.

state of the world. Instead, Social MDPs are recursive in terms of the rewards of the agents. This47

makes Social MDPs and I-POMDPs orthogonal and complementary. Social MDPs are specifically48

formulated to not interfere with the standard extension from MDPs to POMDPs, making it possible49

to include partial observability. While we do not develop a joint Social I-POMDP here, this is a50

reasonable extension which would cover far more of the space of social interactions, although one51

that is computationally challenging.52

Our contributions are: (1) formulating Social MDPs where an agent’s reward function is an arbitrary53

function of the recursive estimate of another agent’s reward and a physical goal, (2) an implementation54

where that function is a linear transformation, which captures many notions of helping and hindering,55

(3) demonstrating that the model performs zero-shot social reasoning in agreement with a human56

subjects experiment, and (4) examples of the practical utility of recursive social reasoning, In an57

anonymized online appendix1 we fully enumerate all possible scenarios predicted by our model given58

an environment simple enough to allow doing so, demonstrating that it captures a diverse set of social59

behaviors. We also provide videos of the behavior of our model in all these scenarios.60

2 Related Work61

Modeling other agents In order to interact with other agents effectively, an agent must be able62

to reason about the goals, preferences, and beliefs of other agents [5]. Theory-based models for63

social goal attribution [6, 7, 8, 9, 10], Bayesian inverse planning to infer an agent’s goal given the64

observations of their behaviors [11, 12], and learning the reward functions of other agents [13] have65

been explored. Prior research also tried to recognize social interactions such as waving and hugging66

in videos where people are involved in group activities [14, 15, 16]. These methods generally involve67

two separate stages [17]: a social perception stage and a coordination or collaboration stage where68

agents interact. In contrast, Social MDPs constantly reevaluate the goals of other agents enabling69

them to adapt to changes in the plans of other agents. Social MDPs also allow for enumerating social70

situations by formally defining the space of what social interactions are, opening the doors to a more71

theoretical approach to social interactions. Game theory [18, 19] considers altruistic and spiteful72

behavior through linear combinations of payoffs, similarly to what we consider here although such73

1See https://social-mdp.github.io
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models are limited to level 1 reasoning and to scenarios where the goals are known a prior rather than74

estimated on the fly as they are in Social MDPs and in practical robotic applications.75

Simulating social interactions Heider and Simmel [20] simulated agent trajectories to study social76

perceptions through a set of animations involving the movements of geometrical figures. Simulating77

agent behaviors in physics engines had been explored to collect datasets in fully observable [21, 22]78

and partially observable environments [23, 17]. The collected datasets are used to study social79

perception or build machine learning models that can recognize agents’ goals. These frameworks80

assume that each agent has either a physical goal or a social goal. Here we consider a more general81

scenario where agents have both a physical goal and a social goal and the overall behavior is a blend82

of the two. This is a more practical setting as when one decides to help another agent one does not83

abandon every other concern and physical care. Our formulation allows for an arbitrary function of84

another agent’s reward recognizing for complex social interactions. We explore only a subset of the85

full power of Social MDPs here by considering only linear functions.86

Learning to interact with other agents Interactive POMDPs [24, 25, 26] (I-POMDPs) are exten-87

sions of POMDPs that recursively model the beliefs of other agents. Social MDP and I-POMDPs are88

orthogonal. Social MDPs allow agents to reason recursively about other agents’ reward functions89

while I-POMDPs allow agents to reason recursively about other agent’s beliefs about the state of the90

world. The two could in principle be combined, but while Social MDPs require solving a modest91

number of additional nested MDPs, I-POMDPs require significantly nested inference, and when92

the two are combined the problem quickly becomes intractable. Xie et al. [27] propose a different93

type of approach that does not require nested inference: learning a low-dimensional representation94

of another agent’s strategy. This approach allows an agent to avoid another agent or to manipulate95

another agent into some mutually-beneficial behavior. Social MDPs, on the other hand, allow building96

the strategy of another agent directly into the reward function of an agent, enabling behaviors such97

as helping or hindering regardless of what the other agent is trying to achieve. Moreover, Social98

MDPs are zero-shot, while this prior approach is not. From the point of view of generalization and99

sample-efficient robotics, a zero-shot approach is preferable; in addition, it opens new doors for a100

more theoretical understanding of social interactions. We could combine Social MDPs with this prior101

work to build in latent representations of strategies into reward functions [28, 29] creating more102

efficient approximations of Social MDPs.103

3 Social MDPs104

Social MDPs are recursive MDPs (Markov decision process) with nested estimates of other agent’s105

goals. They are inspired by hierarchical models of games [30] and nested MDP that reason about106

the beliefs of other agents [31, 32, 33]. Fig. 1 shows an example of recursively estimating the other107

agent’s goals and policy in a two-agent scenario. Like other nested models, e.g I-POMDPs, Social108

MDPs have the notion of a level. A level 0 Social MDP is simply an MDP: agents reason about109

the map state. A level 1 Social MDP enables each agent to reason about the physical goals of other110

agents (those other agents are treated like level 0 agents). A level 2 Social MDP enables each agent111

to reason about the level 1 social goals of other agents. To perform this nested inference, agents must112

have access to another agents’ physical and social goals. These goals are estimated by solving Social113

MDPs recursively at every level.114

A level 0 agent can take physical actions, but cannot reason socially. A level 1 agent can take actions115

relative to another agent’s physical goals; such actions include helping, hindering, stealing, etc. A116

level 2 agent can take actions relative to another agent’s social and physical goals; such actions117

include avoiding an attempt to be hindered, recognizing that help is needed, joining in to help together.118

Levels deeper than 2 continue to describe meaningful interactions although we do not consider them119

here. It is unclear what level of recursion is required before agents exceed the social reasoning120

capacities of humans.121

3.1 Assumptions122

As we are in an MDP setting, all physical states are fully observable to all agents. Note however123

that the goals are not available to other agents. In other words, agents can observe one another at124

any distance and regardless of any obstacles but they cannot know what another agent wants (either125

physically or socially) by reading that agent’s mind. Agents must infer the physical and social goals,126

if any, of other agents from their actions. Agents reason completely independently of one another.127
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In this paper, we consider only pairwise Social MDPs; indeed, all our experiments involve settings128

where only two agents are present. N-way Social MDPs that consider social interactions between129

multiple agents at the same time are extensions of pairwise MDP and scale linearly at every level.130

Computationally however, n-way Social MDPs, as with any such model, scale exponentially in n.131

As with many multiagent MDP settings, the experiments performed here assume that agents are132

optimal planners. This is not an inherent limitation of Social MDPs, but relaxing this assumption133

makes estimating the other agents’ goals and rewards far more difficult.134

3.2 Formal definition of Social MDPs135

A Social MDP for agent i with respect to all agents J consists of an arity (here we formulate the136

pairwise case) and a maximum level, l, and is defined as:137

M l
i = 〈S,A, T, χiJ , gi, Rli, γ〉 (1)

where S is a set of states in the environment where s ∈ S; A = AJ is the set of joint moves of all138

agents in J . ai is an action for agent i; T is the probability distribution of going from state s ∈ S to139

next state s′ ∈ S given actions of all agents in J : T (s′ | s, aJ); χiJ is agent i’s social goal toward140

every other agent in J . For convenience, χiJ is a shorthand for
⋃

j∈J,j 6=i
χij ; gi is agent i’s physical141

goal; Rli is the l-th level reward function for agent i based on its estimate of other agents’ rewards;142

and γ is a discount factor, γ ∈ (0, 1).143

Reward Each agent has its own physical goal, e.g., going to a landmark, as well a social goal, e.g.,144

helping or hindering other agents. What enables Social MDPs to go beyond regular MDPs is the145

recursive nature of the reward function which can be written in terms of the estimated rewards of146

other agents. The immediate reward of an agent i at level l is computed as follows:147

Rli(s, aJ , χiJ , gi) = ri (s, ai, gi) +
∑

j∈J,j 6=i

χij(R̃
i,l−1
j (s, aJ , χ̃

i,l
jJ , g̃

i,l
j ))− c(ai) (2)

where r(·) is the static reward given the agent’s own physical goal gi, R̃
l−1,i
j (·) is the estimated148

reward for agent j from agent i’s point of view assuming agent j is a level l− 1 agent, c(·) is the cost149

for taking an action. For negative levels, the reward is defined to be zero.150

χij is the social goal, it transforms the reward of another agent j into a goal that is part of the reward151

of the target agent i. In this paper, we instantiate the model with a linear transformation, so χij152

is simply a reweighting of the estimated reward of the other agent. If it is a negative value, the153

target agent will attempt to minimize the reward of another agent, i.e. hindering. A positive value154

corresponds to helping. Social goals can be eliminated entirely by setting this weight to zero.155

In order to estimate another agent’s reward function, one needs to estimate that agent’s physical and156

social goals. We use χ̃i,ljJ and g̃i,lj to denote the estimated social and physical goals. The superscript157

i, l indicates agent i at level l is making the estimations. We describe how to estimate the social and158

physical goals in Section 3.3.1.159

3.3 Planning for Social MDPs160

Analogous to MDPs, the Q function of Social MDPs is the sum of immediate reward and the expected161

value in the future.162

Qli(s, aJ , χiJ , gi) = R(s, ai, χiJ , gi) + γ
∑
s′∈S

T (s, aJ , s
′)V li (s

′, χiJ , gi) (3)

Since agent i is interacting with other agents j ∈ J , it needs to estimate what actions other agents are163

likely to take in order to compute its state-action value. Social MDPs take the expectation over the164

estimated goals and actions of agent j to compute V li (s
′, χiJ , gi):165

V
l
i (s
′
, χiJ , gi) = max

a′
i
∈Ai

{
E
g̃
i,l
j
,χ̃
i,l
jJ
,a′
j

[Q
l
i(s
′
, a
′
J , χiJ , gi)]

}

= max
a′
i
∈Ai

{ ∑
j∈J,
j 6=i

∑
a′
j
∈Aj

∑
g̃
i,l
j

∫
χ̃
i,l
ji

P (g̃
i,l
j |s

1:t
)︸ ︷︷ ︸

estimate physical goal
(Eq. 6)

P (χ̃
i,l
ji | s, aJ )︸ ︷︷ ︸

estimate social goal
(Eq. 5)

ψ̃
i,l−1
j (s

′
, a
′
J , χ̃

i,l
ji , g̃

i,l
j )︸ ︷︷ ︸

estimate social policy
(Eq. 7)

Q
l
i(·)dχ̃

i,l
ji

}
(4)

4



166

When solving agent i’s MDP at level l, the estimated social and physical goals are further used to167

update the other agent j’s social policy to the actions agent j may take. We denote the estimated168

social policy for agent j at reasoning level l − 1 as ψ̃i,l−1j : S × AJ × χ̃i,ljJ × g̃
i,l
j → [0, 1]. Fig. 2169

summarizes the steps to compute the state-action values and select optimal actions for any level l at170

time step t. We first update the probability of the estimated goals of other agents using the observed171

state and the estimated policy from the previous time step. The updated probability of goals are used172

to update the policy of other agents and compute the reward and Q function of the target agent. The173

recursion happens at estimating the social policies of other agent at a lower level.174

3.3.1 Updating social and physical goals of other agents175

An agent’s estimate of another agent’s social and physical goals at time step t and level l can176

be updated based on the actions performed by the agents. At time step t = 0, we use uniform177

distributions for social and physical goals.178

The social goal, estimated at time step t, is updated after actions taken by all agents at the previous179

time step. This update is similar to the belief update in the POMDP framework but based on the180

estimated social policy of the other agent j:181

P (χ̃
i,l,t
ji | st−1

, a
t−1
J ) ∝ P (χ̃

i,t−1
ji | st−2

, a
t−2
J )

∑
g̃
i,l,t−1
j

P (a
t−1
j | st−1

, χ̃
i,l,t−1
ji , g̃

i,l,t−1
j )× T (s

t−1
, a
t−1
J , s

t
)

(5)

182

The physical goal gj of agent j is estimated by i as follows, similar to Shu et al. [21] but marginalized183

over the estimated social goal as the agent is estimating the social goal at the same time.184

P (g̃i,l,tj |s1:t−1) ∝
∫
χ̃i,l,tji

P (s1:t−1|g̃i,l,tj , χ̃i,l,tji ) · P (g̃i,l,tj ) · P (χ̃i,l,tji ) dχ̃i,l,tji (6)

3.3.2 Estimating social policies of other agents185

The l-level social policy ψ̃i,lj of the agent j is predicted by i using the Q-function at level l-1:186

ψ̃i,l−1j (s, aJ , χ̃
i,l
jJ , g̃

i,l
j ) = Softmax(Ql−1j (s, aJ , χ̃

i,l
jJ , g̃

i,l
j )) (7)

This is a softmax policy where we use a temperature parameter τ to control how much the agent j187

follows the greedy actions. As shown in Eq. 4, in order to use agent j’s Q function at level l-1, it188

requires to compute agent i’s Q function at level l-2, and so on. This involves solving Social MDPs189

recursively at levels 0, 1, · · · , l-1.190

3.4 Time complexity191

The time complexity of solving a Social MDP at level 0 is the same as that of solving an MDP. At192

level 1, an MDP must be solved for every agent independently in order to compute the likely physical193

goals of every other agent. Assume that the number of models considered for each pair of agents at194

each level is bounded by a number M (based on the number of social and physical goals to consider).195

Solving a Social MDP at level l requires solving O(M(A − 1)2l) MDPs, where A is the number196

of agents. Social MDPs form a tree with branching factor A− 1 as every agent must compute the197

pairwise social goal of every other agent until level 0 where the tree bottoms out. There are many198

potential speedups that can alleviate this runtime to allow for efficient inference even in the face of199

many agents. For example, a distance horizon could be used where far away agents could simply200

be considered non-interacting. Similar to Netanyahu et al. [23], it is also possible to speed up the201

algorithm by amortized inference over goals and relations by training a neural net to recognize goals202

and relations as initial guesses and refine them through probabilistic inference.203

4 Results204

We apply the Social MDP framework to a multi-agent grid world inspired by previous studies on205

social perceptions [12, 6, 34]. The 10× 10 world consists of two agents, a yellow robot and red robot,206

two physical landmarks, a flower and tree, and two objects, a yellow watering can and red watering207

can. The yellow agent has a low cost for moving the yellow watering can, while it has a high cost for208

moving the red watering can. Robots can have a physical goal of moving the watering can to a target209
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(a) Scenario 28: Red wants to help yellow (χred,yellow = 2)

(b) Scenario 30: Red wants to hinder yellow (χred,yellow = −1).

Figure 3: Two examples of zero-shot social interactions.The Social MDP gives the robots the ability to
understand and predict relationships, thereby making far more efficient actions. The yellow robot wants to water
the tree. Moving the yellow watering can is easy for the yellow robot, while moving the red can is hard for the
yellow robot. The yellow robot performs inference to understand what the red robot is doing. With a level 1
Social MDP, the yellow robot assumes that the red robot has a physical goal, but not a social goal. With a level 2
Social MDP, the yellow robot assumes that the red robot has both a physical and social goal, then recursively
estimates the social goal of the red robot (which is in turn modeled as a level 1 Social MDP).
(a) At level 1, the yellow robot follows the red one around. It does not understand that the red robot is trying
to help. The red robot correctly executes its social goal of helping the yellow robot by moving its watering
can toward the tree. At level 2, the yellow robot recognizes that red is helping, then estimates where its future
trajectory will take it, and efficiently goes to the intercept point accepting red’s help.
(b) At level 1, yellow does not infer that red wants to hinder it. As such, it attempts to move the yellow can and
repeatedly fails, entering a local minima where the yellow can is the one easiest to move without realizing that
the red robot will forever prevent this. At level 2, the yellow robot recognizes that the red robot is attempting to
hinder it, gives up on the yellow can, and makes a globally-optimal move of using the harder-to-move red can
instead.

plant. Robots can have a social goal of helping or hindering to different degrees. In the grid world,210

agents can move in four directions (left, right, up, down) or choose not to move.211

98 different experiment scenarios 2 are systematically created in this grid world. Each scenario has212

agents as having either the same physical goal or different physical goals and one of 7 different213

scaling factors on each of their social goals (-2, -1, -0.5, 0, 0.5, 1, 2) (2 ∗ 7 ∗ 7 = 98 scenarios). 2214

indicates that the social goal is weighted much more than the physical goal, and an agent wants to215

maximize the other agent’s goal. Similarly for -2, except that an agent wants to minimize another216

agent’s goal. At 1, agents weigh their own social goals equally with their own physical goals. At217

0.5, they put twice as much weight on their physical goals as their social goals. These agents are less218

likely to help, particularly if helping will cost more time or energy than carrying out the physical219

goal. Finally, either agent can have the factor set to zero; these agents only have a physical goal and220

no social goal. The fact that we can enumerate all possible social interactions, as predicted by our221

model, in a given scenario is an important feature missing from alternative representations. All 98222

experiment scenarios correspond to reasonable interactions between agents. The degree to which this223

is true in more complex environments and the degree to which systematically unfolding the model in224

2Interactions for the experimental scenarios can be viewed at https://social-mdp.github.io/
scenarios
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(left) Weight of social goals (right) Weight physical goals

Figure 4: Twelve human subjects, and our model, the Social MDP, watched and scored 196 videos at different
snapshots. These videos consist of 98 scenarios where robots reason at either level 1 or level 2 (presented to the
users in randomized order). The straight black line represents the best linear fit to the data, and the light blue
band around the line shows the uncertainty in the linear fit. The light blue band represents a 95% confidence
interval. (left) Models and humans were asked to predict how social the agents were and the valence of the
interaction (was it positive or negative). Non-social settings have a weight of 0, while adversarial settings have a
social weight of -2, overwhelming the physical goal of any agent. Humans and machines predict similar social
goals both in terms of value and magnitude. (right) Models and humans were asked to predict a weight factor on
the physical goal, how much does this agent care about its physical goal. At 0, the physical goal is ignored. At 1,
it is weighted equally with a social goal also set at 1. Human and model scores are again highly correlated. Our
model is able to effectively generate trajectories that humans recognize as being social interactions. It is also
able to predict the type of social interaction that humans believe occurred.

Social MDP (ours) Inverse Planning Cue-based
Social Goal 0.83 0.76 0.19

Physical Goal 0.74 0.64 0.06

Table 1: The coefficient of correlation with 95% confidence interval between human and machine judgements
for all the 98 experiment scenarios (each scenario has agents having either the same or different physical goals
along with one of 7 different scaling factors on each of their social goals (-2, -1, -0.5, 0, 0.5, 1, 2)). Refer to
Appendix for detailed results for each scenario. We provide two baselines and our own approach. The cue-based
model is described in Shu et al. [21]. The inverse planning model is described in Ullman et al. [12]. Social MDPs
produce better alignment with ground truth than other models and do not require training like the cue-based
model.

more complex environments always results in what humans would describe as social interactions is225

an important topic for future work.226

Each agent’s reward for reaching its physical goal is based on that agent’s geodesic dis-227

tance from the goal after taking an action [12]. This physical reward function is parameter-228

ized by ρ and δ that determines the scale and shape of the physical reward: ri(s, a, gi) =229

max (ρ (1− distance(s, a, gi)/δ) , 0). We set the cost, c, of an action a, to 1 for grid moves and 0.1230

to staying in place while ρ and δ were set to 1.25 and 5, respectively. The discount factor, γ, was set231

to 0.99.232

Two of the scenarios selected for our experiment are shown in Fig. 3. We used the Social MDP233

to select actions for the yellow agent which has a physical goal, watering the flower or tree, while234

interacting with the red agent. The red agent had a physical goal, watering the tree, and a varying235

social goal. At every time step, the yellow agent estimates the physical and social goal of the red236

agent, depending on the Social MDP level. At deeper levels, the agents behave more optimally and237

more socially.238

To quantitatively establish the quality of the social inferences made by the Social MDPs, we compare239

human judgements of 12 subjects against those of two baseline models: inverse planning [12] and a240

recent cue-based model [21]. Refer to Table 2 and Table 3 in the appendix for detailed results for241

each scenario. Humans and models had to estimate the physical and social goals of agents in these242

environments when the agents were acting both as level one agents (unaware that the other agents are243

also social) and as level two agents (who could account for the fact that the other agents are social).244

In Fig. 4 we show the raw judgements of humans and of our models, along with a best linear fit. The245

performance of all models against human judgements, was measured through correlation coefficient246

at 95% confidence level, for social goal estimation (r = 0.89 for the Social MDP vs. r = 0.81 for the247
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Figure 5: A deep dive into how humans and each model interpret the five experiment scenarios (refer to
Appendix for results for all experiment scenarios) at both levels at each time step (in red Human scores, in blue
our Social MDP scores, in green Inverse planning [12], in purple the cue-based model [21], and in dotted the
ground truth). The goal of each model is to interpret how one agent perceives another. (top) At level one,
an agent has a belief over the physical goal of another agent. Humans and models predict what this belief is
(the degree to which the agent believes that the other agent is heading toward the tree or the flower). Note that
all models perform rather well and follow human judgements. (bottom) At level two, an agent has a belief
over the physical and social goals of another agent. Humans and models predict what the beliefs of the agents
are about the social goals of other agents. In other words, to what degree does this agent think that the other
agent is hindering or helping them. Here our model fits human data much better because of its recursive nature.
At deeper levels, our model is capable of capturing social interactions and social inferences that other models
cannot. Other models are confused, and so predict that there is a very weak or non-existent social goal in most
cases while our model follows human judgements.

Inverse Planning model vs. r = 0.23 for the Cue-based model) and physical goal estimation (r = 0.78248

for the Social MDP vs. r = 0.72 for the Inverse Planning model vs. r = 0.08 for the Cue-based model).249

Our model performs considerably better than other models. This is even more evident in the deep250

dive shown in Fig. 5. For level one agents, agents that are social but that assume that other agents251

are not social, all models agreed with human judgements. Yet, for level two agents, agents that are252

social and can assume that other agents are also social, our models are far better aligned with human253

judgements. Prior work could capture a far smaller space of social interactions than the Social MDPs254

we craft here.255

5 Conclusion256

Social MDPs are a first step toward a theory of social interactions that fits within the established257

frameworks we have in robotics. They can perform zero-shot social recognition and planning for258

diverse situations. The fact that MDPs can be extended in a natural way that is also computationally259

tractable to account for many social interactions by nesting inference and allowing models to260

take arbitrary functions of the estimated rewards of other agents has not been noted before. Our261

experiments clearly show that Social MDPs are superior to prior models and account for more social262

interactions.263

In this work, we have only begun to explore what Social MDPs can represent. The environment we264

consider is very simple, yet, at the same time, more than enough to differentiate Social MDPs from265

other models. So far, we have unrolled Social MDPs only two levels; what exists at deeper levels is266

still unclear. It is likely that humans do not perform deeply-nested recursive reasoning to carry out267

social interactions, although, what the cutoff is, and if Social MDPs are close enough to a human’s268

mental model to allow for measuring that cutoff is unknown.269

We would like to see in the future that any MDP-based system can be augmented to be social by270

a straightforward extension with Social MDPs. Much like virtually any approach can be easily271

augmented to partially-observed environments using POMDPs. Social MDPs and POMDPs are272

compatible, exploring their combinations and the implications of partial observability for social273

interactions remains as future work.274
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A Experiments359

The list of all the experimental scenarios 3 varied across physical goals and social goals for the two360

agents (yellow robot and red robot), Table 2. Each scenario has agents as having either the same361

physical goal or different physical goals and one of 7 different scaling factors on each of their social362

goals (-2, -1, -0.5, 0, 0.5, 1, 2) (2 ∗ 7 ∗ 7 = 98 scenarios). 2 indicates that the social goal is weighted363

much more than the physical goal, and an agent wants to maximize the other agent’s goal. Similarly364

for -2, except that an agent wants to minimize another agent’s goal. At 1, agents weigh their own365

social goals equally with their own physical goals. At 0.5, they put twice as much weight on their366

physical goals as their social goals. These agents are less likely to help, particularly if helping will367

cost more time or energy than carrying out the physical goal. Finally, either agent can have the factor368

set to zero; these agents only have a physical goal and no social goal.369

Table 2: An enumeration of all 98 scenarios for different configurations of physical and social goals
of the robots.

Scenario Id Yellow Robot Red Robot

Physical Goal Social Scaling Physical Goal Social Scaling

S1 Tree -2 Flower -2
S2 Tree -2 Flower -1
S3 Tree -2 Flower -0.5
S4 Tree -2 Flower 0
S5 Tree -2 Flower 0.5
S6 Tree -2 Flower 1
S7 Tree -2 Flower 2
S8 Tree -1 Flower -2
S9 Tree -1 Flower -1

S10 Tree -1 Flower -0.5
S11 Tree -1 Flower 0
S12 Tree -1 Flower 0.5
S13 Tree -1 Flower 1
S14 Tree -1 Flower 2
S15 Flower -0.5 Tree -2
S16 Tree -0.5 Flower -1
S17 Tree -0.5 Flower -0.5
S18 Tree -0.5 Flower 0
S19 Tree -0.5 Flower 0.5
S20 Tree -0.5 Flower 1
S21 Tree -0.5 Flower 2
S22 Tree 0 Flower -2
S23 Tree 0 Flower -1
S24 Tree 0 Flower -0.5
S25 Tree 0 Flower 0
S26 Tree 0 Flower 0.5
S27 Tree 0 Flower 1
S28 Tree 0 Flower 2
S29 Tree 0.5 Flower -2
S30 Tree 0.5 Flower -1
S31 Tree 0.5 Flower -0.5
S32 Tree 0.5 Flower 0
S33 Tree 0.5 Flower 0.5
S34 Tree 0.5 Flower 1
S35 Tree 0.5 Flower 2
S36 Tree 1 Flower -2
S37 Tree 1 Flower -1

3Interactions for the experimental scenarios can be viewed at https://social-mdp.github.io/
scenarios
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S38 Tree 1 Flower -0.5
S39 Tree 1 Flower 0
S40 Tree 1 Flower 0.5
S41 Tree 1 Flower 1
S42 Tree 1 Flower 2
S43 Tree 2 Flower -2
S44 Tree 2 Flower -1
S45 Tree 2 Flower -0.5
S46 Tree 2 Flower 0
S47 Tree 2 Flower 0.5
S48 Tree 2 Flower 1
S49 Tree 2 Flower 2
S50 Tree -2 Tree -2
S51 Tree -2 Tree -1
S52 Tree -2 Tree -0.5
S53 Tree -2 Tree 0
S54 Tree -2 Tree 0.5
S55 Tree -2 Tree 1
S56 Tree -2 Tree 2
S57 Tree -1 Tree -2
S58 Tree -1 Tree -1
S59 Tree -1 Tree -0.5
S60 Tree -1 Tree 0
S61 Tree -1 Tree 0.5
S62 Tree -1 Tree 1
S63 Tree -1 Tree 2
S64 Tree -0.5 Tree -2
S65 Tree -0.5 Tree -1
S66 Tree -0.5 Tree -0.5
S67 Tree -0.5 Tree 0
S68 Tree -0.5 Tree 0.5
S69 Tree -0.5 Tree 1
S70 Tree -0.5 Tree 2
S71 Tree 0 Tree -2
S72 Tree 0 Tree -1
S73 Tree 0 Tree -0.5
S74 Tree 0 Tree 0
S75 Tree 0 Tree 0.5
S76 Tree 0 Tree 1
S77 Tree 0 Tree 2
S78 Tree 0.5 Tree -2
S79 Tree 0.5 Tree -1
S80 Tree 0.5 Tree -0.5
S81 Tree 0.5 Tree 0
S82 Tree 0.5 Tree 0.5
S83 Tree 0.5 Tree 1
S84 Tree 0.5 Tree 2
S85 Tree 1 Tree -2
S86 Tree 1 Tree -1
S87 Tree 1 Tree -0.5
S88 Tree 1 Tree 0
S89 Tree 1 Tree 0.5
S90 Tree 1 Tree 1
S91 Tree 1 Tree 2
S92 Tree 2 Tree -2
S93 Tree 2 Tree -1
S94 Tree 2 Tree -0.5
S95 Tree 2 Tree 0
S96 Tree 2 Tree 0.5
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S97 Tree 2 Tree 1
S98 Tree 2 Tree 2

For each of the experiment scenario we show the Yellow robot’s estimation of the physical and social370

goal of the red robot at each time step. The overall performance of Social MDPs and the baselines371

against the ground truth is reported in Table 1, with Table 3 showing the inferences of the model and372

baselines.373

Table 3: Using Social MDP, at different levels of reasoning, Yellow robot estimates the physical and
social goal of the red robot at each time step. The lines in in red are Human scores, in blue is our
Social MDP scores, in green is Inverse planning [12], in purple is the cue-based model [21], and in
dotted is the ground truth).

Scenario Id Physical goal estimation
(Level 1)

Social goal estimation
(Level 2)

S1 Red robot is initialized with the physical goal of Flower and social goal of -2.
Yellow robot is initialized with the physical goal of Tree and social goal of -2.

S2 Red robot is initialized with the physical goal of Flower and social goal of -1.
Yellow robot is initialized with the physical goal of Tree and social goal of -2.

S3 Red robot is initialized with the physical goal of Flower and social goal of -0.5.
Yellow robot is initialized with the physical goal of Tree and social goal of -2.

S4 Red robot is initialized with the physical goal of Flower and social goal of 0.
Yellow robot is initialized with the physical goal of Tree and social goal of -2.
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S5 Red robot is initialized with the physical goal of Flower and social goal of 0.5.
Yellow robot is initialized with the physical goal of Tree and social goal of -2.

S6 Red robot is initialized with the physical goal of Flower and social goal of 1.
Yellow robot is initialized with the physical goal of Tree and social goal of -2.

S7 Red robot is initialized with the physical goal of Flower and social goal of 2.
Yellow robot is initialized with the physical goal of Tree and social goal of -2.

S8 Red robot is initialized with the physical goal of Flower and social goal of -2.
Yellow robot is initialized with the physical goal of Tree and social goal of -1.

S9 Red robot is initialized with the physical goal of Flower and social goal of -1.
Yellow robot is initialized with the physical goal of Tree and social goal of -1.
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S10 Red robot is initialized with the physical goal of Flower and social goal of -0.5.
Yellow robot is initialized with the physical goal of Tree and social goal of -1.

S11 Red robot is initialized with the physical goal of Flower and social goal of 0.
Yellow robot is initialized with the physical goal of Tree and social goal of -1.

S12 Red robot is initialized with the physical goal of Flower and social goal of 0.5.
Yellow robot is initialized with the physical goal of Tree and social goal of -1.

S13 Red robot is initialized with the physical goal of Flower and social goal of 1.
Yellow robot is initialized with the physical goal of Tree and social goal of -1.

S14 Red robot is initialized with the physical goal of Flower and social goal of 2.
Yellow robot is initialized with the physical goal of Tree and social goal of -1.
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S15 Red robot is initialized with the physical goal of Tree and social goal of -2.
Yellow robot is initialized with the physical goal of Flower and social goal of
-0.5.

S16 Red robot is initialized with the physical goal of Flower and social goal of -1.
Yellow robot is initialized with the physical goal of Tree and social goal of -0.5.

S17 Red robot is initialized with the physical goal of Flower and social goal of -0.5.
Yellow robot is initialized with the physical goal of Tree and social goal of -0.5.

S18 Red robot is initialized with the physical goal of Flower and social goal of 0.
Yellow robot is initialized with the physical goal of Tree and social goal of -0.5.

S19 Red robot is initialized with the physical goal of Flower and social goal of 0.5.
Yellow robot is initialized with the physical goal of Tree and social goal of -0.5.
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S20 Red robot is initialized with the physical goal of Flower and social goal of 1.
Yellow robot is initialized with the physical goal of Tree and social goal of -0.5.

S21 Red robot is initialized with the physical goal of Flower and social goal of 2.
Yellow robot is initialized with the physical goal of Tree and social goal of -0.5.

S22 Red robot is initialized with the physical goal of Flower and social goal of -2.
Yellow robot is initialized with the physical goal of Tree and social goal of 0.

S23 Red robot is initialized with the physical goal of Flower and social goal of -1.
Yellow robot is initialized with the physical goal of Tree and social goal of 0.

S24 Red robot is initialized with the physical goal of Flower and social goal of -0.5.
Yellow robot is initialized with the physical goal of Tree and social goal of 0.
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S25 Red robot is initialized with the physical goal of Flower and social goal of 0.
Yellow robot is initialized with the physical goal of Tree and social goal of 0.

S26 Red robot is initialized with the physical goal of Flower and social goal of 0.5.
Yellow robot is initialized with the physical goal of Tree and social goal of 0.

S27 Red robot is initialized with the physical goal of Flower and social goal of 1.
Yellow robot is initialized with the physical goal of Tree and social goal of 0.

S28 Red robot is initialized with the physical goal of Flower and social goal of 2.
Yellow robot is initialized with the physical goal of Tree and social goal of 0.

S29 Red robot is initialized with the physical goal of Flower and social goal of -2.
Yellow robot is initialized with the physical goal of Tree and social goal of 0.5.
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S30 Red robot is initialized with the physical goal of Flower and social goal of -1.
Yellow robot is initialized with the physical goal of Tree and social goal of 0.5.

S31 Red robot is initialized with the physical goal of Flower and social goal of -0.5.
Yellow robot is initialized with the physical goal of Tree and social goal of 0.5.

S32 Red robot is initialized with the physical goal of Flower and social goal of 0.
Yellow robot is initialized with the physical goal of Tree and social goal of 0.5.

S33 Red robot is initialized with the physical goal of Flower and social goal of 0.5.
Yellow robot is initialized with the physical goal of Tree and social goal of 0.5.

S34 Red robot is initialized with the physical goal of Flower and social goal of 1.
Yellow robot is initialized with the physical goal of Tree and social goal of 0.5.
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S35 Red robot is initialized with the physical goal of Flower and social goal of 2.
Yellow robot is initialized with the physical goal of Tree and social goal of 0.5.

S36 Red robot is initialized with the physical goal of Flower and social goal of -2.
Yellow robot is initialized with the physical goal of Tree and social goal of 1.

S37 Red robot is initialized with the physical goal of Flower and social goal of -1.
Yellow robot is initialized with the physical goal of Tree and social goal of 1.

S38 Red robot is initialized with the physical goal of Flower and social goal of -0.5.
Yellow robot is initialized with the physical goal of Tree and social goal of 1.

S39 Red robot is initialized with the physical goal of Flower and social goal of 0.
Yellow robot is initialized with the physical goal of Tree and social goal of 1.
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S40 Red robot is initialized with the physical goal of Flower and social goal of 0.5.
Yellow robot is initialized with the physical goal of Tree and social goal of 1.

S41 Red robot is initialized with the physical goal of Flower and social goal of 1.
Yellow robot is initialized with the physical goal of Tree and social goal of 1.

S42 Red robot is initialized with the physical goal of Flower and social goal of 2.
Yellow robot is initialized with the physical goal of Tree and social goal of 1.

S43 Red robot is initialized with the physical goal of Flower and social goal of -2.
Yellow robot is initialized with the physical goal of Tree and social goal of 2.

S44 Red robot is initialized with the physical goal of Flower and social goal of -1.
Yellow robot is initialized with the physical goal of Tree and social goal of 2.
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S45 Red robot is initialized with the physical goal of Flower and social goal of -0.5.
Yellow robot is initialized with the physical goal of Tree and social goal of 2.

S46 Red robot is initialized with the physical goal of Flower and social goal of 0.
Yellow robot is initialized with the physical goal of Tree and social goal of 2.

S47 Red robot is initialized with the physical goal of Flower and social goal of 0.5.
Yellow robot is initialized with the physical goal of Tree and social goal of 2.

S48 Red robot is initialized with the physical goal of Flower and social goal of 1.
Yellow robot is initialized with the physical goal of Tree and social goal of 2.

S49 Red robot is initialized with the physical goal of Flower and social goal of 2.
Yellow robot is initialized with the physical goal of Tree and social goal of 2.
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S50 Red robot is initialized with the physical goal of Tree and social goal of -2.
Yellow robot is initialized with the physical goal of Tree and social goal of -2.

S51 Red robot is initialized with the physical goal of Tree and social goal of -1.
Yellow robot is initialized with the physical goal of Tree and social goal of -2.

S52 Red robot is initialized with the physical goal of Tree and social goal of -0.5.
Yellow robot is initialized with the physical goal of Tree and social goal of -2.

S53 Red robot is initialized with the physical goal of Tree and social goal of 0. Yellow
robot is initialized with the physical goal of Tree and social goal of -2.

S54 Red robot is initialized with the physical goal of Tree and social goal of 0.5.
Yellow robot is initialized with the physical goal of Tree and social goal of -2.
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S55 Red robot is initialized with the physical goal of Tree and social goal of 1. Yellow
robot is initialized with the physical goal of Tree and social goal of -2.

S56 Red robot is initialized with the physical goal of Tree and social goal of 2. Yellow
robot is initialized with the physical goal of Tree and social goal of -2.

S57 Red robot is initialized with the physical goal of Tree and social goal of -2.
Yellow robot is initialized with the physical goal of Tree and social goal of -1.

S58 Red robot is initialized with the physical goal of Tree and social goal of -1.
Yellow robot is initialized with the physical goal of Tree and social goal of -1.

S59 Red robot is initialized with the physical goal of Tree and social goal of -0.5.
Yellow robot is initialized with the physical goal of Tree and social goal of -1.
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S60 Red robot is initialized with the physical goal of Tree and social goal of 0. Yellow
robot is initialized with the physical goal of Tree and social goal of -1.

S61 Red robot is initialized with the physical goal of Tree and social goal of 0.5.
Yellow robot is initialized with the physical goal of Tree and social goal of -1.

S62 Red robot is initialized with the physical goal of Tree and social goal of 1. Yellow
robot is initialized with the physical goal of Tree and social goal of -1.

S63 Red robot is initialized with the physical goal of Tree and social goal of 2. Yellow
robot is initialized with the physical goal of Tree and social goal of -1.

S64 Red robot is initialized with the physical goal of Tree and social goal of -2.
Yellow robot is initialized with the physical goal of Tree and social goal of -0.5.
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S65 Red robot is initialized with the physical goal of Tree and social goal of -1.
Yellow robot is initialized with the physical goal of Tree and social goal of -0.5.

S66 Red robot is initialized with the physical goal of Tree and social goal of -0.5.
Yellow robot is initialized with the physical goal of Tree and social goal of -0.5.

S67 Red robot is initialized with the physical goal of Tree and social goal of 0. Yellow
robot is initialized with the physical goal of Tree and social goal of -0.5.

S68 Red robot is initialized with the physical goal of Tree and social goal of 0.5.
Yellow robot is initialized with the physical goal of Tree and social goal of -0.5.

S69 Red robot is initialized with the physical goal of Tree and social goal of 1. Yellow
robot is initialized with the physical goal of Tree and social goal of -0.5.
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S70 Red robot is initialized with the physical goal of Tree and social goal of 2. Yellow
robot is initialized with the physical goal of Tree and social goal of -0.5.

S71 Red robot is initialized with the physical goal of Tree and social goal of -2.
Yellow robot is initialized with the physical goal of Tree and social goal of 0.

S72 Red robot is initialized with the physical goal of Tree and social goal of -1.
Yellow robot is initialized with the physical goal of Tree and social goal of 0.

S73 Red robot is initialized with the physical goal of Tree and social goal of -0.5.
Yellow robot is initialized with the physical goal of Tree and social goal of 0.

S74 Red robot is initialized with the physical goal of Tree and social goal of 0. Yellow
robot is initialized with the physical goal of Tree and social goal of 0.
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S75 Red robot is initialized with the physical goal of Tree and social goal of 0.5.
Yellow robot is initialized with the physical goal of Tree and social goal of 0.

S76 Red robot is initialized with the physical goal of Tree and social goal of 1. Yellow
robot is initialized with the physical goal of Tree and social goal of 0.

S77 Red robot is initialized with the physical goal of Tree and social goal of 2. Yellow
robot is initialized with the physical goal of Tree and social goal of 0.

S78 Red robot is initialized with the physical goal of Tree and social goal of -2.
Yellow robot is initialized with the physical goal of Tree and social goal of 0.5.

S79 Red robot is initialized with the physical goal of Tree and social goal of -1.
Yellow robot is initialized with the physical goal of Tree and social goal of 0.5.
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S80 Red robot is initialized with the physical goal of Tree and social goal of -0.5.
Yellow robot is initialized with the physical goal of Tree and social goal of 0.5.

S81 Red robot is initialized with the physical goal of Tree and social goal of 0. Yellow
robot is initialized with the physical goal of Tree and social goal of 0.5.

S82 Red robot is initialized with the physical goal of Tree and social goal of 0.5.
Yellow robot is initialized with the physical goal of Tree and social goal of 0.5.

S83 Red robot is initialized with the physical goal of Tree and social goal of 1. Yellow
robot is initialized with the physical goal of Tree and social goal of 0.5.

S84 Red robot is initialized with the physical goal of Tree and social goal of 2. Yellow
robot is initialized with the physical goal of Tree and social goal of 0.5.
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S85 Red robot is initialized with the physical goal of Tree and social goal of -2.
Yellow robot is initialized with the physical goal of Tree and social goal of 1.

S86 Red robot is initialized with the physical goal of Tree and social goal of -1.
Yellow robot is initialized with the physical goal of Tree and social goal of 1.

S87 Red robot is initialized with the physical goal of Tree and social goal of -0.5.
Yellow robot is initialized with the physical goal of Tree and social goal of 1.

S88 Red robot is initialized with the physical goal of Tree and social goal of 0. Yellow
robot is initialized with the physical goal of Tree and social goal of 1.

S89 Red robot is initialized with the physical goal of Tree and social goal of 0.5.
Yellow robot is initialized with the physical goal of Tree and social goal of 1.
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S90 Red robot is initialized with the physical goal of Tree and social goal of 1. Yellow
robot is initialized with the physical goal of Tree and social goal of 1.

S91 Red robot is initialized with the physical goal of Tree and social goal of 2. Yellow
robot is initialized with the physical goal of Tree and social goal of 1.

S92 Red robot is initialized with the physical goal of Tree and social goal of -2.
Yellow robot is initialized with the physical goal of Tree and social goal of 2.

S93 Red robot is initialized with the physical goal of Tree and social goal of -1.
Yellow robot is initialized with the physical goal of Tree and social goal of 2.

S94 Red robot is initialized with the physical goal of Tree and social goal of -0.5.
Yellow robot is initialized with the physical goal of Tree and social goal of 2.
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S95 Red robot is initialized with the physical goal of Tree and social goal of 0. Yellow
robot is initialized with the physical goal of Tree and social goal of 2.

S96 Red robot is initialized with the physical goal of Tree and social goal of 0.5.
Yellow robot is initialized with the physical goal of Tree and social goal of 2.

S97 Red robot is initialized with the physical goal of Tree and social goal of 1. Yellow
robot is initialized with the physical goal of Tree and social goal of 2.

S98 Red robot is initialized with the physical goal of Tree and social goal of 2. Yellow
robot is initialized with the physical goal of Tree and social goal of 2.
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